v^2+4=63

Simple and best practice solution for v^2+4=63 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for v^2+4=63 equation:



v^2+4=63
We move all terms to the left:
v^2+4-(63)=0
We add all the numbers together, and all the variables
v^2-59=0
a = 1; b = 0; c = -59;
Δ = b2-4ac
Δ = 02-4·1·(-59)
Δ = 236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{236}=\sqrt{4*59}=\sqrt{4}*\sqrt{59}=2\sqrt{59}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{59}}{2*1}=\frac{0-2\sqrt{59}}{2} =-\frac{2\sqrt{59}}{2} =-\sqrt{59} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{59}}{2*1}=\frac{0+2\sqrt{59}}{2} =\frac{2\sqrt{59}}{2} =\sqrt{59} $

See similar equations:

| 60+25v(4)=20+35v(4) | | 7(4c-1)=-287 | | 3.5y=3 | | 2-3+20=2x | | 4m-5+3m+3=180 | | 5(u-9)=3u-43 | | (x+6)^2-18=0 | | (3x−15)+(8x+8)+(2x+18)=180 | | m^2+10m+18=2 | | 9-4d=17 | | 4m-42-12=36+5m | | 2c+8+6c-6=90 | | 2+1/2b=4b-4 | | 60+25v(4)=20+35(4) | | 3(3-2v)=-2v+11-4v-2 | | 10x+-5=9x+3 | | -8x=78+130 | | 7/2x+1/2x=+6+5/2x | | 2.5-0.75(2x+5)=0.375 | | w/9-47=-38 | | -7+9x-2=54 | | a^2+1=26 | | -(v+4)+5=4v+1–5v7. | | -4y+16=4(y-6) | | 60+25v=20+35v | | 8x-2+3x=31 | | 4(-4-6x)=-88 | | 2(6=6x)+x=12+4x | | 4z+5z−19z–15=5 | | 4x-6x+12-4=16 | | (4x/7)-8=1 | | x/3–4=15 |

Equations solver categories